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An alternative approach to the calculation of transmission factors is given. Several variance-reducing 
techniques are discussed. A comparison with earlier attempts is made. Description of a program is given. 
Some results are listed. Typical computing time is 0.3 sec per reflexion (cpu) on an IBM 360]65. 

Introduction 

One of the major difficulties in the derivation of correct 
structure factors from observed intensity values for 
diffracted X-rays is the correction for absorption. The 
transmission factor A-1 (A being the absorption fac- 
tor) is given by 

A -1 = V-1 1 exp [ - (I, + la)/~]d V, (1) 

where V is the irradiated crystal volume,/~ is the linear 
absorption coefficient and l~ and la are the path lengths 
of the incident and diffracted beam respectively. 

The integral (1) can be evaluated in three ways: 

(1) The numerical method called Gaussian quadrature 
(Busing & Levy, 1957); 

(2) The analytical method (De Meulenaer & Tompa, 
1965); 

(3) The Monte Carlo method (Alberti & Gottardi, 
1966). 

An excellent review on the relative merits and demerits 
of methods (1) and (2) is given by Coppens (1970). 
Since these methods are rather expensive in terms of 
computer time, we decided to investigate the third 
alternative. 

Principles of  the Monte  Carlo method 

Assume that we want to integrate a function F(x) of x 
within the interval a_< x_< b, and furthermore assume 

1 
that the integration cannot be executed by conventiona 
means. We denote the estimand 0 

0 = f :  F(x)dx .  (2) 

Now the expression 
1 N 

t =  N ,~=i r(~i) (3) 

is an unbiased estimator of 0 if, and only if, ~ are N 
independent random numbers distributed rectangularly 
between a and b. Its variance is given by 

a 2 1 I b 
var ( t )=  N - N (F(x)-O)Edx " (4) 

a 

Let the desired standard deviation of t have the 
valuep, then the number of values F(~) to be computed 
is 

N = a2/p z. (5) 

In general integral (4) will not be known. An unbiased 
estimator of a 2 is 

1 k 
S2= --k-l,=__~ r [ ( ~ , ) -  F] z, (6) 

where F denotes the mean of k F(~i) values. Determine 
N=sZ/p z and compute, if necessary, N - k  additional 
values F(~). Again evaluating (3) gives the desired 
result t. 

This procedure is called 'Crude Monte Carlo' (here- 
after CMC). A Fortran program for the calculation of 



R. A. G. DE G R A A F F  299 

transmission factors based on this method has been 
designed by Alberti & Gottardi. A similar program 
devised in this laboratory did not yield satisfactory 
results. Very many values of F(~) were needed to 
obtain a reasonably accurate value for A -~. CMC, 
therefore, compares unfavourably with methods 1 
and 2. Fortunately there are several different ways of 
reducing the population variance a 2, thereby reducing 
the number of required values F(~). Three of these 
methods are treated below; for further details and 
other methods the reader is referred to Hammersley & 
Handscomb (1964). 

Stratified sampling 

Stratified sampling implies division of the range of 
integration of (2) into several steps c~j_~<x<ej, 
a = e0 < cq < . . .  < c~k = b and application of CMC to 
each step. The estimator of 0 now has the form 

k nj 1 
t =  ~ ~ (~j-~j_~)-h-fF(~j_~+(c~j-aj_0~u),  (7) 

j = l  i=1 

sampling nj points in each interval. Estimator (7) is 
unbiased and its variance is given by 

a2(t) = ~ °cJ--°~J-t I ~j FZ(x)dx 
j=l nj ,~-x 

- ~ . . . . .  F(x)dx . (8) 
j=~  F/j ~i-- 1 

The best way to distribute the sample points among 
2 is proportional to the strata is to ensure that n 3 

S (a j -a j -O F2(x)dx - F(x)dx . (9) 
~i-1  ~i -1  

Several ways of choosing the numbers a: are possible, 
for instance, a j -  aj_ ~ = ( b -  a)/k, signifying the divi- 
sion of the original range of integration into k equal 
parts. It is however better to define the aj in such a way 
that the variance of F(x) is the same for each part. 

If the stratification is properly carried out, var (t) 
according to (8) is in general considerably smaller 
than var (t) according to (4). In our case nothing is 
known about the variance of F(x) in the individual 
strata. We therefore simplify in the following manner: 
as-as_l=(b-a)/k, ~i1=¢i2.~-...~1k and n l=n2=  
. . .  nk f o r j = l , 2 , . . . , k .  
In this way we obtain 

t -  kN  ~" ~ F ( j - l ) +  . (10) 
i = l  j = l  

Regression 

Assume that we have N unknown estimands 01 , . . . ,  ON 
and a set of estimators h , . . . , t m  ( m > N )  with the 
property 

gh=xaO~+x~202+... +x~,O,, ( i= 1 ,2 , . . . ,m)  (11) 

where gt~ denotes the expectation value of h and the 
x u a set of known constants. In matrix notation 

gT=XO (12) 

where T, X and O are matrices of dimension m x 1, 
m x N  and N x 1 respectively. Now the minimum- 
variance unbiased linear estimator of the vector 
O(01,.. . ,0N) is given by (Hamilton, 1964) 

T* = (Y,M-'X)-D~M - 'T ,  (13) 
where X is the transpose of X, and M is the m x m 
variance-covariance matrix of the h. 

In most cases matrix M will be unknown. Let us 
consider the alternative estimator 

T* = (R.M G-'X)- L.XM 0-'T. (14) 
M0 is some other m x m variance-covariance matrix. 
Because "1~ is a linear function of T we have 

eTt =e(RMG"X)-'~,MG"T = (YT, M;-'X)-',q, MG-'e T 
= (RM~-';K)-'XM;-'XO = O .  

Whatever M0 we use, T; is an unbiased estimator of O. 
If M0 is reasonably close to M, T; will be close to T*. 

Control variates 

Let us consider integral (2). We may rewrite this as 

O= lb, q~(x)dx + fi[F(x)-~o(x)]dx . (15) 

We now try to find a function cp(x) with the following 
properties: 

(1) Ib~a(x)dx has a known numerical value; 

(2) ~o(x) mimics F(x) to some extent over the interval 
a - b .  

In general conditions (1) and (2) give rise to conflicting 
requirements. The function ~0(x) must be simple enough 
to be integrated analytically. On the other hand ~a(x) 
has to imitate F(x) in order to absorb most of its 
variance. A decent compromise for ~o(x) may yield an 
appreciable reduction of the population variance as 
compared with CMC. 

Practical considerations 

In the program the crystal is represented by a 33 x 33 x 
33 isometric grid. We divide the crystal volume into N 
volume elements A Vj. A grid point belonging to the 
crystal represents the centre of a volume element. 
Since these elements are small we regard the path 
lengths l~ and ld as being constant for each element. If, 
however, /zR (R being the approximate average path 
length) is large the approximation is not valid and 
severe errors may occur. If the approximation is 
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allowable, integral (1) becomes (Albrecht, 1939) 

A _  1 1 N = ~ ~ exp [-( l~j-lnj)/ t] .  (16) 
j = l  

We want to evaluate this expression by more sophis- 
ticated means than CMC. Accordingly a rearrange- 
ment of (16) is necessary. All grid points belonging to 
the crystal are stored in vector B of dimension N x 1 
(N being the total number of grid points belonging to 
the crystal, N <  333). Denoting the grid coordinates of 
point i by x ,  yi, z~ we calculate the element b~ from B 
by the linear expression* 

b~=x~+ 17+33(y~+ 16)+ 1089(z~ + 16). (17) 

Equation (16) now becomes 

I' A-~= G(x)dx (18) 
o 

where G(x~) is defined by the following procedure: 

(1) Calculate N x x ~ + l  and truncate. The result is 
calledj; 

(2) Take element bj from B and find x j, yj and z j; 
(3) Compute l~j and ldj in the usual way (Wiinsch & 

Prewitt, 1965); 
(4) Compute G(xi) = exp [ -  #(li~ - ln:)]. 

The CMC estimator t is now 

t= N G(~,), 0 < ~ , < 1  . (19) 
i=1 

The program computes A -1 for the first reflexion 
using estimator (10) with k = 6 4  and k =  128, applying 
regression to find A -x. We incorporated the option 
that G(x) for one reflexion can be used as control 
variate for the next one: 

Aff~=AH_-I+ _l(x)]dx 

(H stands for reflexion hkl). (20) 

The program evaluates the integral part of (20) 
using estimator (10) with k = 8 and 16, again applying 
regression. In this step the same random numbers ~ 
were used for each computation. Great care should 
be taken while using this option. In order to avoid 
accumulation of errors transmission factors of re- 
flexions should be computed independently at regular 
intervals. 

Results 

In Table 1 computed transmission factors for a sphere 
with /zR=I are compared with those tabulated in 
International Tables for X-ray Crystallography (1962). 
Different orientations for the incident beam with 
respect to the crystal grid were tried. No significant 

* This expression is the most  efficient way to store the three 
grid coordinates  in a single number .  

Table 1. Computed transmission factors (A71) and 
transmission factors (A71) tabulated in International 

Tables 

0 (°) A~ 1 A71 0 (°) A~ 1 A71 

0 0"243 0"243 25 0"259 0"258 
10 0"246 0"245 30 0"264 0"264 
15 0"249 0"248 40 0"270 0"270 
20 0"253 0"253 0 0"243 0"243 

variations in the calculated values were observed. 
A computation as described by Cahen & Ibers (1972) 

has been carried out. Transmission factors of a pris- 
matic crystal based on orthogonal cell axes and bounded 
by the (100), (0T0), ]10), (001) and (00T) faces are cal- 
culated. The cross section is an isosceles triangle. Two 
sides with length x are perpendicular to [100] and 
[0T0] and the third with length xl/2 is perpendicular to 
[T10]. The crystal is mounted on the diffractometer in 
such a way that the goniometer axis is parallel to [001]. 
The diffraction plane is perpendicular to [001] (Z=0°). 

For the case 20= 90 ° the transmission factor may be 
evaluated analytically as a function of x(cm) and 
/t(cm -1) for the 1T0 and T10 reflexions. Some values 
obtained for A-I  in this fashion are listed in Table 2, 
together with the corresponding values calculated by 
our program. The program yields satisfactory results 
for/ tR values up to 10; for larger values the order of 
magnitude is correct. 

Table 2. Transmission factors calculated by the program 
and by Cahen & Ibers (1972) 

Reflexion x(cm) 
i lO  1 

T10 0.05 

1T0 1 

1T0 0.05 

#(cm -1) A - I  (program) A -1 (C&I)  

0-1 0.940 0"937 
1 0.570 0.568 
10 0.095 0.095 
100 0.007 0-00995 
1 0-968 0.967 
10 0.731 0-736 
100 0.179 0.180 
1000 0.013 0.0198 
0.1 0.936 0.936 
1 0.531 0.528 
10 0-020 0.020 
100 0-7 x 10 .6 0"2 x 10 -a 
1 0"968 0.967 
10 0"724 0-722 
100 0.077 0.077 
1000 0"0008 0-0008 

Correction for absorption has been carried out on 
1200 reflexions obtained from a crystal having compo- 
sition Ni(IO3)2.4H20, #=90.3 cm -1 and dimensions 
0.33 x 0.27 × 0.16 ram. The structure has been refined 
to an R value of 2.1% (Elemans & Verschoor, 1973). 
The crystal had been mounted with [001] along the tp 
axis of the three-circle diffractometer. For the value 
2,= - 9 0  ° and 0=  9.79 °, the reflexion 004 was measured 
for 12 different positions. The observed intensity values 
of this reflexion before and after correction for absorp- 
tion are listed in Table 3. The relative standard error 
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for observed intensity values not corrected for absorp- 
tion is a(Iou)= 16.3%, the corresponding error after 
correction is a(Ioc)= 1.2 %. 

Table 3. Intensity values of  the reflexion 004 
of  Ni(IOa)z.4H20 before and after correction for 

absorption 

0 224 949 90' 382 944 
15 270 974 105 380 948 
30 313 950 120 372 951 
45 354 963 135 349 954 
60 376 960 150 304 942 
75 381 950 165 269 978 

The absorption-correction program has also success- 
fully been used in the structure determination of hexa- 
chloroborazine (Haasnoot, Verschoor, Romers & 
Groeneveld, 1972) and of cis-2-chloro-4-t-butylcyclo- 
hexanone (De Graaff, Giesen, Rutten & Romers, 
1972). 

The program has been designed for an IBM 360/65 
computer. The average computing time for a reflexion 
of a crystal with six boundary planes and an average 
transmission of 25 % is about 0.3 seconds (cpu) if the 
desired standard deviation is 2 %. Computing time is 
roughly inversely proportional to the desired variance 

as well as to the square of the transmission factor. A 
source listing of the program is available on request. 

The author is indebted to Dr C. Romers and Dr 
G. C. Verschoor for valuable discussions. 

References 

ALBERTI, A. & GOTTARDI, G. (1966). Acta Cryst. 21, 883- 
834. 

ALBRECHT, G. (1939). Rev. Sci. Instrum. 10, 221-222. 
BUSING, W. R. & LEVY, H. A. (1957). Acta Cryst. 10, 180- 

182. 
CAt-my, D. & IBERS, J. A. (1972). J. Appl. Cryst. 5, 298-299. 
COPPENS, P. (1970). Crystallographic Computing, pp. 255- 

270, Edited by F. R. AnMED. Copenhagen : Munksgaard. 
DE MEULENAER, J. & TOMPA, H. (1965). Acta Cryst. 19, 

1014-1018. 
ELEMANS, J. & VERSCHOOR, G. C. (1973). To be published. 
GRAAFF, R. A. G. DE, GIESSEN, M. T., RUTTEN, E. W. M. 

t~; ROMERS, C. (1972). Acta Cryst. B28, 1576-1583. 
HAASNOOT, J. G., VERSCHOOR, G. C., ROMERS, C. • GROENE- 

VELD, W. L. (1972). Aeta Cryst. B28, 2070-2073. 
HAMILTON, W. C. (1964). Statistics in Physical Science, New 

York: The Ronald Press. 
HAMMERSLEY, J. M. & HANDSCOMB, D. C. (1964). Monte 

Carlo Methods. London: Methuen. 
International Tables for X-ray Crystallography (1962). Vol. 

II, pp. 302-305. Birmingham:Kynoch Press. 
WONSCH, R. J. & PREWITr, C. T. (1965). Z. Kristallogr. 

122, 24-59. 

Acta Cryst. (1973). A29, 301 

Diffraction des Electrons par les Cristaux Mol6culaires. 
II. Relation entre l'Intensit6 Diffus6e et la Matrice Dynamique 

PAR PH. AUDIT ET J. P. JARDIN 

D~partement de Physique, Facult~ des Sciences, Moulin de la Housse, 51-Reims, France 

(Rec.u le 27 octobre 1972, aeeeptd le 8 janvier 1973) 

The total scattered intensity has been expressed in terms of the dynamical matrix; from this expression 
it follows that the scattering of short-wavelength radiations is strongly influenced by correlations 
between the displacements of the atoms comprising the crystal, which are dependent upon the values 
of atomic force constants. A linear chain of diatomic molecules is considered as an example of the 
theory. 

Introduction 

En th6orie cin6matique de la diffraction des rayons X 
et des 61ectrons par les cristaux, l'intensit6 totale est 
traditionnellement s6par6e, en trois parties distinctes 
soient: l'intensit6 correspondant aux r6flexions de 
Bragg (ordre z6ro) qui d6termine les param~tres 
structuraux; l'intensit6 de diffusion thermique du 
premier ordre qui fournit des renseignements sur les 
courbes de dispersion; et la diffusion thermique d'ordre 
sup6rieur qui est consid6r6e comme une correction 

difficile 5. 6valuer, sinon n6gligeable. En fait, la justifi- 
cation th6orique d'une telle partition repose en der- 
nitre analyse sur un d6veloppement en s6rie de l'inten- 
sit6, dont la convergence n'est assur6e que pour les 
faibles valeurs des amplitudes de vibration et du 
module du vecteur de diffraction. Ce formalisme 
parait ainsi particuli~rement inad6quat pour des 
cristaux poss6dant des liaisons faibles et pour un 
rayonnement de tr~s faible longueur d'onde. Ces 
deux conditions sont notamment r6unies dans le cas 
de la diffraction des 61ectrons rapides par les cristaux 
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